Minimum Rank Problems

نویسنده

  • Leslie Hogben
چکیده

A graph describes the zero-nonzero pattern of a family of matrices, with the type of graph (undirected or directed, simple or allowing loops) determining what type of matrices (symmetric or not necessarily symmetric, diagonal entries free or constrained) are described by the graph. The minimum rank problem of the graph is to determine the minimum among the ranks of the matrices in this family; the determination of maximum nullity is equivalent. This problem has been solved for simple trees [11, 9], trees allowing loops [5], and directed trees allowing loops [2]. We survey these results from a unified perspective and solve the minimum rank problem for simple directed trees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variants on the minimum rank problem: A survey II∗

1 The minimum rank problem for a (simple) graph G is to determine the smallest possible 2 rank over all real symmetric matrices whose ijth entry (for i 6= j) is nonzero whenever {i, j} 3 is an edge in G and is zero otherwise. This paper surveys the many developments on the 4 (standard) minimum rank problem and its variants since the survey paper [36]. In particular, 5 positive semidefinite mini...

متن کامل

Ela on the Minimum Vector Rank of Multigraphs∗

The minimum vector rank (mvr) of a graph over a field F is the smallest d for which a faithful vector representation of G exists in Fd . For simple graphs, minimum semidefinite rank (msr) and minimum vector rank differ by exactly the number of isolated vertices. We explore the relationship between msr and mvr for multigraphs and show that a result linking the msr of chordal graphs to clique cov...

متن کامل

The complexity of computing the minimum rank of a sign pattern matrix

We show that computing the minimum rank of a sign pattern matrix is NP hard. Our proof is based on a simple but useful connection between minimum ranks of sign pattern matrices and the stretchability problem for pseudolines arrangements. In fact, our hardness result shows that it is already hard to determine if the minimum rank of a sign pattern matrix is ď 3. We complement this by giving a pol...

متن کامل

1 4 M ay 2 01 5 The complexity of computing the minimum rank of a sign pattern matrix ̊

We show that computing the minimum rank of a sign pattern matrix is NP hard. Our proof is based on a simple but useful connection between minimum ranks of sign pattern matrices and the stretchability problem for pseudolines arrangements. In fact, our hardness result shows that it is already hard to determine if the minimum rank of a sign pattern matrix is ď 3. We complement this by giving a pol...

متن کامل

Zero forcing parameters and minimum rank problems

Abstract. The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a 1 graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by 2 G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive 3 semidefinite zero forcing number Z+(G) is introduced, and ...

متن کامل

Minimum ranks of sign patterns via sign vectors and duality

A sign pattern matrix is a matrix whose entries are from the set {+,−, 0}. The minimum rank of a sign pattern matrix A is the minimum of the ranks of the real matrices whose entries have signs equal to the corresponding entries of A. It is shown in this paper that for any m×n sign pattern A with minimum rank n− 2, rational realization of the minimum rank is possible. This is done using a new ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009